Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464327

RESUMO

Objectives: Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context. Methods: Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results: Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of A>G and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions: Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.

2.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631979

RESUMO

The respiratory system is the main target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 19 (COVID-19) where acute respiratory distress syndrome is considered the leading cause of death. Changes in pulmonary blood vessels, among which an endothelialitis/endotheliitis has been particularly emphasized, have been suggested to play a central role in the development of acute lung injury. Similar vascular changes are also observed in animal models of COVID-19. The present study aimed to determine whether the latter are specific for SARS-CoV-2 infection, investigating the vascular response in the lungs of mice infected with SARS-CoV-2 and other respiratory viruses (influenza A and murine gammaherpesvirus) by in situ approaches (histology, immunohistology, morphometry) combined with RNA sequencing and bioinformatic analysis. Non-selective recruitment of monocytes and T and B cells from larger muscular veins and arteries was observed with all viruses, matched by a comparable transcriptional response. There was no evidence of endothelial cell infection in any of the models. Both the morphological investigation and the transcriptomics approach support the interpretation that the lung vasculature in mice mounts a stereotypic response to alveolar and respiratory epithelial damage. This may have implications for the treatment and management of respiratory disease in humans.


Assuntos
COVID-19 , Sistema Cardiovascular , Gammaherpesvirinae , Influenza Humana , Humanos , Animais , Camundongos , SARS-CoV-2 , Modelos Animais de Doenças
3.
Virology ; 587: 109849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515945

RESUMO

Myosin heavy chain 9 (MYH9) has been identified as a crucial factor in gammaherpesvirus infection. Murine gammaherpesvirus 68 (MHV-68) was used as an appropriate viral model for investigating gammaherpesviruses in vivo and developing antiviral treatments. However, the roles of MYH9 in MHV-68 infection have not been documented. In the study, the relationship between the expression of MYH9 and MHV-68 infection and MYH9 as the antiviral target were analyzed. The results revealed that MYH9 was enriched on the cell surface and co-localized with MHV-68 upon viral infection. Knocking down MYH9 with siRNA or using the specific inhibitor of MYH9 activity, Blebbistatin, resulted in the decreasing of MHV-68 infection. Furthermore, polyclonal antibodies against MYH9 reduced infection by approximately 74% at a dose of 100 µg/ml. The study determined that MYH9 contributes to MHV-68 infection by interacting with viral glycoprotein 150 (gp150) in the BHK-21 cell membrane. The specific region of MYH9, amino acids 1811-1960 (C-150), was identified as the key domain involved in the interaction with MHV-68 gp150 and was found to inhibit MHV-68 infection. Moreover, C-150 was also shown to decrease HSV-1 infection in Vero cells by approximately 73%. Both C-150 and Blebbistatin were found to inhibit MHV-68 replication and reduce histopathological lesions in vivo in C57BL/6J mice. Taken together, these findings suggested that MYH9 is crucial for MHV-68 infection through its interaction with viral gp150 and that C-150 may be a promising antiviral target for inhibiting MHV-68 infection in vitro and in vivo.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Rhadinovirus , Animais , Camundongos , Aminoácidos , Antivirais/metabolismo , Chlorocebus aethiops , Gammaherpesvirinae/genética , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Rhadinovirus/genética , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Nat Commun ; 14(1): 3583, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328472

RESUMO

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Animais , Cricetinae , Camundongos , Antivirais/farmacologia , Peptídeos/farmacologia , Anticorpos , Mesocricetus , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
5.
Emerg Microbes Infect ; 12(1): 2217940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37219409

RESUMO

Wild animals are naturally infected with a range of viruses, some of which may be zoonotic. During the human COVID pandemic there was also the possibility of rodents acquiring SARS-CoV-2 from people, so-called reverse zoonoses. To investigate this, we sampled rats (Rattus norvegicus) and mice (Apodemus sylvaticus) from urban environments in 2020 during the human COVID-19 pandemic. We metagenomically sequenced lung and gut tissue and faeces for viruses, PCR screened for SARS-CoV-2, and serologically surveyed for anti-SARS-CoV-2 Spike antibodies. We describe the range of viruses that we found in these two rodent species. We found no molecular evidence of SARS-CoV-2 infection, though in rats we found lung antibody responses and evidence of neutralization ability that are consistent with rats being exposed to SARS-CoV-2 and/or exposed to other viruses that result in cross-reactive antibodies.


Assuntos
COVID-19 , Vírus , Humanos , Animais , Ratos , Camundongos , SARS-CoV-2 , Roedores , Pandemias , Anticorpos Antivirais
6.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632761

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Sistema Nervoso Central , Tropismo Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/virologia , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Síndrome Pós-COVID-19 Aguda
7.
Emerg Infect Dis ; 27(2): 517-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496240

RESUMO

The lack of population health surveillance for companion animal populations leaves them vulnerable to the effects of novel diseases without means of early detection. We present evidence on the effectiveness of a system that enabled early detection and rapid response a canine gastroenteritis outbreak in the United Kingdom. In January 2020, prolific vomiting among dogs was sporadically reported in the United Kingdom. Electronic health records from a nationwide sentinel network of veterinary practices confirmed a significant increase in dogs with signs of gastroenteric disease. Male dogs and dogs living with other vomiting dogs were more likely to be affected. Diet and vaccination status were not associated with the disease; however, a canine enteric coronavirus was significantly associated with illness. The system we describe potentially fills a gap in surveillance in neglected populations and could provide a blueprint for other countries.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino , Surtos de Doenças , Doenças do Cão/epidemiologia , Vômito/veterinária , Animais , Doenças do Cão/virologia , Cães/virologia , Reino Unido/epidemiologia
8.
J Extracell Vesicles ; 8(1): 1632100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275534

RESUMO

Gram-negative bacteria naturally produce and secrete nanosized outer membrane vesicles (OMVs). In the human gastrointestinal tract, OMVs produced by commensal Gram-negative bacteria can mediate interactions amongst host cells (including between epithelial cells and immune cells) and maintain microbial homeostasis. This OMV-mediated pathway for host-microbe interactions could be exploited to deliver biologically active proteins to the body. To test this we engineered the Gram-negative bacterium Bacteroides thetaiotaomicron (Bt), a prominent member of the intestinal microbiota of all animals, to incorporate bacteria-, virus- and human-derived proteins into its OMVs. We then used the engineered Bt OMVs to deliver these proteins to the respiratory and gastrointestinal (GI)-tract to protect against infection, tissue inflammation and injury. Our findings demonstrate the ability to express and package both Salmonella enterica ser. Typhimurium-derived vaccine antigens and influenza A virus (IAV)-derived vaccine antigens within or on the outer membrane of Bt OMVs. These antigens were in a form capable of eliciting antigen-specific immune and antibody responses in both mucosal tissues and systemically. Furthermore, immunisation with OMVs containing the core stalk region of the IAV H5 hemagglutinin from an H5N1 strain induced heterotypic protection in mice to a 10-fold lethal dose of an unrelated subtype (H1N1) of IAV. We also showed that OMVs could express the human therapeutic protein, keratinocyte growth factor-2 (KGF-2), in a stable form that, when delivered orally, reduced disease severity and promoted intestinal epithelial repair and recovery in animals administered colitis-inducing dextran sodium sulfate. Collectively, our data demonstrates the utility and effectiveness of using Bt OMVs as a mucosal biologics and drug delivery platform technology.

9.
Dev Comp Immunol ; 100: 103411, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31202894

RESUMO

Adipose tissue (AT) has wide functions as an active endocrine organ acting as a site of nutrient storage and thermogenesis. Recently it has been identified as having a key role in murine and human immunity and inflammation. Type 1 or type 2 immune responses and their respective cytokines have been linked to white or brown AT, respectively. Most dramatic is the involvement of type-2 innate lymphoid cells (ILC2s) in stimulating eosinophil recruitment via interleukin (IL)-13 which in turn stimulates alternative macrophage activation via IL-4/IL-13. Recruited leukocytes are capable of influencing the cellular composition and function of adipose tissue and present a route to combat human obesity, however these processes are poorly understood in ruminants. Here we have characterised the resident leukocytes populations within bovine mesenteric AT (MAT) and subcutaneous AT (SAT), compared with the corresponding mesenteric lymph node (MLN). Concurring with related studies, we find bovine AT has its own resident leukocyte populations where eosinophils and neutrophils dominate. Importantly the proportion of eosinophils or neutrophils corresponded to the adipocyte size found in both depots. Further exploration of this area may have important implications on the food production industry or could be applied to improve the course of pathogenesis during disease.


Assuntos
Bovinos/imunologia , Imunidade Inata , Gordura Intra-Abdominal/citologia , Leucócitos/imunologia , Gordura Subcutânea/citologia , Adipócitos , Criação de Animais Domésticos , Animais , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Gordura Intra-Abdominal/imunologia , Contagem de Leucócitos , Leucócitos/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Ativação de Macrófagos , Masculino , Mesentério/citologia , Mesentério/imunologia , Gordura Subcutânea/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...